Highly Sensitive Flash LADAR Camera, Phase II

NASA

Completed Technology Project (2016 - 2019)

Project Introduction

To address the urgent need for 3D flash-lidar technology for landing on solar system bodies and for spacecraft rendezvous and docking with satellites, an effort is proposed to fabricate, characterize, and test a versatile, highsensitivity InGaAs APD 3D flash lidar and to advance the technology-readiness level (TRL) of lidar technologies suitable for NASA mission requirements. Leveraging an existing InGaAs APD focal-plane array (FPA) technology, improvements will be made to increase its reliability and performance. The high-gain, low-excess-noise APD FPAs will be characterized and integrated with miniature camera electronics, along with a medium-pulse-energy, high-repetition-rate, ultra-compact, pulsed diode-pumped solid-state (DPSS) laser. The lidar sensor will be shown to meet NASA needs in terms of sensitivity and 5-cm range resolutions. Using these results, a large-format (e.g. 1024 x 1024, or larger) FPA will be designed for qualification for space missions.

Primary U.S. Work Locations and Key Partners

Highly Sensitive Flash LADAR Camera, Phase II

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Images	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Highly Sensitive Flash LADAR Camera, Phase II

Completed Technology Project (2016 - 2019)

Organizations Performing Work	Role	Туре	Location
Voxtel, Inc.	Lead Organization	Industry	Beaverton, Oregon
Langley Research Center(LaRC)	Supporting Organization	NASA Center	Hampton, Virginia
University of Dayton	Supporting Organization	Academia	Dayton, Ohio

Primary U.S. Work Locations		
Ohio	Oregon	
Virginia		

Project Transitions

September 2016: Project Start

March 2019: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140807)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Voxtel, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Drake Miller

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Highly Sensitive Flash LADAR Camera, Phase II

Completed Technology Project (2016 - 2019)

Images

Briefing Chart Image Highly Sensitive Flash LADAR Camera, Phase II (https://techport.nasa.gov/image/130180)

Final Summary Chart Image
Highly Sensitive Flash LADAR
Camera, Phase II
(https://techport.nasa.gov/imag
e/126064)

Technology Areas

Primary:

- TX09 Entry, Descent, and Landing
 - └ TX09.3 Landing
 - └ TX09.3.1 Touchdown Systems

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

